124 research outputs found

    Avoiding the Global Sort: A Faster Contour Tree Algorithm

    Get PDF
    We revisit the classical problem of computing the \emph{contour tree} of a scalar field f:Mβ†’Rf:\mathbb{M} \to \mathbb{R}, where M\mathbb{M} is a triangulated simplicial mesh in Rd\mathbb{R}^d. The contour tree is a fundamental topological structure that tracks the evolution of level sets of ff and has numerous applications in data analysis and visualization. All existing algorithms begin with a global sort of at least all critical values of ff, which can require (roughly) Ξ©(nlog⁑n)\Omega(n\log n) time. Existing lower bounds show that there are pathological instances where this sort is required. We present the first algorithm whose time complexity depends on the contour tree structure, and avoids the global sort for non-pathological inputs. If CC denotes the set of critical points in M\mathbb{M}, the running time is roughly O(βˆ‘v∈Clog⁑ℓv)O(\sum_{v \in C} \log \ell_v), where β„“v\ell_v is the depth of vv in the contour tree. This matches all existing upper bounds, but is a significant improvement when the contour tree is short and fat. Specifically, our approach ensures that any comparison made is between nodes in the same descending path in the contour tree, allowing us to argue strong optimality properties of our algorithm. Our algorithm requires several novel ideas: partitioning M\mathbb{M} in well-behaved portions, a local growing procedure to iteratively build contour trees, and the use of heavy path decompositions for the time complexity analysis

    Blackbox identity testing for bounded top fanin depth-3 circuits: the field doesn't matter

    Full text link
    Let C be a depth-3 circuit with n variables, degree d and top fanin k (called sps(k,d,n) circuits) over base field F. It is a major open problem to design a deterministic polynomial time blackbox algorithm that tests if C is identically zero. Klivans & Spielman (STOC 2001) observed that the problem is open even when k is a constant. This case has been subjected to a serious study over the past few years, starting from the work of Dvir & Shpilka (STOC 2005). We give the first polynomial time blackbox algorithm for this problem. Our algorithm runs in time poly(nd^k), regardless of the base field. The only field for which polynomial time algorithms were previously known is F=Q (Kayal & Saraf, FOCS 2009, and Saxena & Seshadhri, FOCS 2010). This is the first blackbox algorithm for depth-3 circuits that does not use the rank based approaches of Karnin & Shpilka (CCC 2008). We prove an important tool for the study of depth-3 identities. We design a blackbox polynomial time transformation that reduces the number of variables in a sps(k,d,n) circuit to k variables, but preserves the identity structure.Comment: 14 pages, 1 figure, preliminary versio
    • …
    corecore